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Abstract—A new hybrid multibias analytical/decomposi-
tion-based parameter extraction procedure for GaAs FETs is
described. The analytical calculations are integrated into an
existing decomposition-based optimizer in a complementary
approach, further increasing the robustness of the existing algo-
rithm. Itisillustrated that, in order toincreasethereliability with
which the full 15-element small-signal model can be extracted,
it is necessary to exploit the underlaying characteristics of the
system and the measured data used. Thisis achieved through the
use of cold S-parameter data, along with simple modifications to
the extraction algorithm, and a new intelligent selection algorithm
for the active bias points used in the multi-bias extraction. The
selection algorithm employs a simple geometric abstraction for
the S-parameter data that allows it to select bias points that
maximize the information available to the extraction procedure.
The new selection algorithm shows for the first time what the
influence of the bias points is on the performance of a multibias
extraction procedure. Experimental resultsproving therobustness
and accuracy of the described procedures are presented.

Index Terms—Centroids, FET, modeling, multibias parameter
extraction, S-parameters, selection algorithms, small-signal.

I. INTRODUCTION

HE ability to generate measurement-based GaAs FET
device models that are accurate enough to allow first-time
design success for a variety of systems has long been a major
goal of device modeling orientated computer-aided design
(CAD) dgorithms. The extraction of the small-signal model
shown in Fig. 1 plays a crucial role in the construction of a
large number of the nonlinear models that have been created
to satisfy this goal.
The basic approach is to extract the small-signal model at
a variety of different bias points and then use the variation
of the intrinsic elements with bias to construct the nonlinear
model. Such an experimental modeling approach requires that
a large number of S-parameter measurements be processed,
creating the need for extraction algorithms that can robustly
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Fig. 1. 15-element small-signal model of a GaAs FET.

perform large extractions without requiring user intervention or
supervision. However, this requirement is made difficult by the
ill-conditioned nature of the small-signal extraction problem.
This causes both direct [1] and optimizer-based extraction
procedures that process the data measured at different bias
points separately to have difficulty in providing consistent
solutions for al the elements in the small-signa model [2].
Several optimizer driven multibias extraction procedures
[3]5] that combine data measured at different bias pointsinto
one unified problem have been proposed. These methods all
assume that the extrinsic elements of the model in Fig. 1 are
bias-independent. By combining data from different sourcesin
the extraction algorithm, more information becomes available
for determining a more unique solution.

In [3] amultibias parameter extraction algorithm that exploits
a decomposition-based optimization algorithm was presented.
The procedure uses multiple sets of .S-parameters measured at
bias points in the active region of the device's Ins-Vps plane
and has been successfully applied to the modeling of both
GaAs high electron-mobility transistor (HEMT) and MESFET
devices. Active bias points at which the device is behaving
as a nonreciproca two-port provide the maximum amount of
measured information per bias point. The extraction algorithm
isbuilt around an adaptive decomposition-based optimizer. This
optimization procedure isindependent of initial valuesand well
suited to the ill-conditioned nature of the extraction problem.
The decomposition approach can also efficiently handle large
dimensional problems and is not as susceptible to the curse of
dimensionality, asin more traditional optimization approaches.
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In [3] a 13-element small-signal model which neglects the
effect of Cp,, and Cp,q Was extracted. The inclusion of the par-
asitic capacitors when dealing with on-wafer measured devices
greatly increases the complexity of the problem. In practice, an
extraction algorithm has to deal with several phenomena that
makeit difficult to achieve consistent resultswhen extracting the
full 15-element model shown in Fig. 1. One of the problems en-
countered isthat the parasitic resistors 14 and R, do not always
adhere to the assumption of biasindependence for the extrinsic
elements. It has been found from experiencethat the value of
can appear to have a large bias dependence and assume values
and avariation with biasthat does not correspond to the physical
reality. Thisin turn can make the determination of the other less
dominant elements difficult. Another difficulty isthe small size
of the parasitic inductors Ly, Ly, and L, of on-wafer measured
devices. The small series impedance resulting from the para-
sitic inductors and resistors that separate C,, and Cp,q from the
larger intrinsic capacitors makesit difficult to accurately extract
theindividual capacitor values. In many instances, device mod-
elers are forced to absorb the effect of these two elements into
theintrinsic capacitors by neglecting them from the small-signal
model. Cj,q can be especially difficult to determine, even for
direct extraction algorithms that rely heavily on model simpli-
fications. The difficulty in determining Cpq can aso be seen
in the variation of the extracted values of L., which exhibits
strong interactions with Cp,q [6], [7]. Since most of the model
elements have complex interactions with each other, it should
be noted that these potential problems should not be viewed in
isolation from each other. Also, not all devices will exhibit all
of the above-mentioned modeling difficulties.

This paper presents three extensions to the decomposition-
based multibias extraction algorithm discussed in [3] which are
able to overcome the discussed extraction difficulties.

In Section Il, a new hybrid optimizer/analytical procedure
aimed at improving the robustness and speed of the original pro-
cedure is presented. Analytical equations for the calculation of
the intrinsic elements are integrated into the existing extraction
procedure. Unlike other published algorithms [4], [5], [8], the
analytical calculations do not replace any section of the opti-
mizer, but are used in a complementary approach.

Section |11 will show how simple modifications to [3], along
with the use of cold S-parameter data, can be used to help over-
come the discussed difficulties in determining Ry, C,s, and
Cpa-

The one aspect of multibias parameter extraction algorithms
that has not been dealt with before is the influence of the bias
points used in the extraction on the accuracy and the size of
the network that can be extracted. In Section 1V, an intelligent
bias point selection algorithm is discussed that maximizes the
information available to the extraction procedure. The aim of
the selection algorithm is to find a relatively small number of
bias points from which a consistent model representation can
be extracted. Once accurate values for the extrinsic elements
are known, they can be de-embedded from the complete set
of multibias S-parameters and a nonlinear model can be con-
structed as was done in [9]. The paper is concluded with a pre-
sentation and discussion of experimental resultsillustrating the

accuracy and robustness of the enhanced multibias extraction
agorithm.

The goal of the work described hereisto develop amodeling
procedure that is capable of extracting all the elements of a
small-signal model for the construction of bias-dependent small-
signal models and nonlinear models of commercial devices,
as well as devices under development, using only measured
data. This means that no process-related information, such as
electromagnetic simulations of the device layout, is allowed as
part of the modeling procedure. The reason for thisrestrictionis
duetothefact that process-relatedinformationisrarely available
to users of commercial devices. The requirement of accurately
extracting al of the small-signal model elements also places
alimit on the complexity of the equivalent circuit models that
are used in the modeling procedure. For the results presented
in the subsequent sections, the widely published 15-element
model topology in Fig. 1 is used.

II. HYBRID ANALYTICAL/DECOMPOSITION-BASED OPTIMIZER

Experience has shown that certain extraction problems are
more difficult to solvereliably than others, regardless of the fact
that the same type of device with similar dimensions is being
modeled. Systematic measurement errors and the fact that the
small-signal model is an imperfect approximation of the real
device creates a variety of extraction difficulties. This ranges
from extraction problems that differ in their sensitivity to the
initial optimization values to model elements that consistently
converge to nonphysical values. When dealing with measured
data, the modeling algorithm therefore needs to be as robust as
possible.

Severa methods that employ analytical equations as part of
an optimizati on-based extraction approach have been published
[4], [5], [8]. In these formulations, the extrinsic elements are
optimized, while the intrinsic elements are cal culated as afunc-
tion of the extrinsic elements using analytical equations. The
primary advantage of this approach is that it limits the dimen-
sions of the optimization problem to be solved. The formulation
in[4] isof special relevance since the procedure is expanded to
multibias problems and the analytical equations used are more
robust than the more traditional equations found in [10].

The danger of using analytical equations to calculate the in-
trinsic elementsisthat the equationsmay fail in certaininstances
due to the measured data used and the ill-conditioned nature of
the problem. The new hybrid procedure proposed heretherefore
always uses both optimization and analytical calculationsto de-
termine the intrinsic parameters. The two possible solutions for
the intrinsic elements are then compared on an element-by-el-
ement basis and in each instance the model element providing
the best solution is retained.

The following steps describe the operation of the hybrid
algorithm.

1) Loadthemeasured dataand theoptimizationinitial values
and perform the required sensitivity calculations for the
decomposition-based optimizer as outlined in [2], [3].

2) Perform one optimization cycle of the subfunctions of the
decomposition optimizer as described in [3].
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3) Perform the hybrid calculations.

a) De-embed the current values of the extrinsic ele-
ments from the measured data.

b) Calculate an alternative set of intrinsic elementsfor
each bias point in the extraction using the analytical
equationsin [4].

¢) Compare each of the optimization-derived in-
trinsic elements with its corresponding calculated
value and choose the element value that provides the
lowest modeling error in the elements associated
optimization subfunction. These subfunctions are the
same error functions that are used by the decompo-
sition-based optimizer when determining the model
element valuesin step 2).

4) Check if the search termination criteria are satisfied.
5) If no, then go to 2)
6) If yes, then stop.

The above description illustrates how the analytical step isin-
corporated into the existing optimizer. If step 3) is disabled,
the algorithm reverts to the normal decomposition-based opti-
mizer. By using the suboptimization error functionsin step 3c),
it becomes possible to compare the two solutions on an ele-
ment-by-element basis. This would not be possible if a global
error representing the modeling accuracy of al four .S-param-
eters of a corresponding bias point was used. The global error
would be mostly influenced by the dominant model parameters,
creating the situation where possible good solutions for the less
dominant elements are discarded.

In addition to making the extraction more robust, the hybrid
procedure shown above also increases the speed of convergence,
especially during the first few iterations when the overall mod-
eling error is large.

[Il. DATA-DRIVEN EXTENSIONS TO THE MULTIBIAS
EXTRACTION ALGORITHM

Much attention has been paid in the literature to the difficul-
ties involved in extracting the parasitic gate resistance R,. R,
isone of the least dominant elementsin the model and is highly
correlated with the intrinsic channel resistance R;. The ability
to separate the values of these two elements has been one of the
motivations behind the development of multibias extraction a-
gorithms.

However, less attention has been paid to the extraction of the
parasitic drain resistance R,. Experience has shown R to be
the element that least conforms to the assumption of bias in-
dependence for the extrinsic elements when extracted from hot
S-parameters. For avariety of HEMTs that have been tested, it
was found that R, can assume either very large or very small
nonphysica vaues, while for MESFETs R, can tend toward
negative values. In the case of MESFETS, the behavior of Ry
could possibly be linked to high field effects between the gate
and drain terminals [11], but for HEMTs no satisfactory phys-
ical explanation is known. Unlike Ry, which has very little in-
fluence on the overall extraction accuracy, the value of R, is
more critical for the successful determination of the other non-
dominant elements in the multibias extraction.
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Fig. 2. Simplified representation of the output impedance of a GaAs FET.

In [12], an extraction procedure for determining R, and R,
using cold bias points with the gate held at a suitably large for-
ward bias was used. Fig. 2 and the equation

Rds
1+ w?C3 R2,
1

R
= ———%__ + R/+R, (1)
_Rlis + w202,

Re[Zowt] = + Ry + R,

show a simplified representation of the output impedance of a
GaAs FET. When Vs isincreased, R, decreases, resultingin
the real part of the FET output impedance being dominated by
Ry and R,. Itisthisbehavior that isexploited in[12]. A careful
study of (1) showsthat asimilar result isobtained when R, as-
sumesvery large values, aswould bethe casewhen Vg isequal
to or lessthan the pinch-off voltage V. Equation (1) also shows
that the dominance of R, and R, on the output impedance can
be further enhanced by using measured data from the upper
measurement frequencies. It should be noted that the effect of
the parasitic drain capacitance Cq4 is ignored in Fig. 2 and
(1. Unlike direct extraction algorithms, optimizer-based proce-
dures do not need to achieve anear exact separation between the
model elements. For a successful extraction, it isonly required
to find the conditions for which the influence of an element will
be more dominant.

A further advantage of using data from cold bias points with
Vas < Vristhattheintrinsicmodel reducestothethreeintrinsic
capacitor values Cys, Cga, and Cy,. The bias points therefore
add a minimum of extra parameters to the multibias extraction
problem, while providing valuable additional information for
determining the solution.

The extraction algorithm in [3] is extended by allowing the
user to lock a small-signal model element to a specified list of
bias points. Only this subset of the datawill be used for the de-
termination of the particular model element. The user aso has
the possibility to specify the frequency range of the measured
datathat isto be used in the determination of an element. To de-
termine Ry, the user thus specifies anumber of cold bias points
with Vgs < Vg along with the normally used nonreciprocal
datafrom active bias points. R islocked to the cold bias points
and no other data is used in the determination of the element.
To further aid in the determination of R,, only measurements
made at frequencies above 15 GHz are used.

The second problem experienced in the extraction of the
model in Fig. 1 isthe separation of the parasitic capacitors C,
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and Cp,q from the intrinsic capacitors. The parasitic capacitors
are separated from the intrinsic capacitors by small series
impedances and their values are small when compared to those
of the intrinsic capacitors at most bias points. Their values
are therefore easily absorbed into the values of the intrinsic
capacitors due to the inability of the extraction algorithm to
clearly distinguish their effect from the other model elements.

In order to determine Cy,, and C,,q, the same extensions as
were used for determining &, can be employed. The parasitic
capacitors are locked to the cold S-parameter data with Vgs <
Vi sincetheintrinsic capacitors generally assume their smallest
values in this bias range. The extrinsic capacitors are therefore
not as overshadowed as before by the size of the intrinsic capac-
itors. To further decrease any interaction between the different
extrinsic elements, Cp, and Cp,q are only determined from data
measured at frequencies below 10 GHz, while the extrinsic in-
ductors and resistors are determined from data measured at fre-
guencies above 15 GHz.

IV. MEASUREMENT-BASED ACTIVE BIAS POINT
SELECTION ALGORITHM

The previous section illustrates how cold measurements,
along with suitable modifications to the extraction agorithm,
can be used to enhance the ability to determine extrinsic
elements that are otherwise difficult to extract. The majority of
the measured data is, however, still obtained from active bias
points where the device is acting as a nonreciprocal two-port.
For the extractions presented in [3], the active bias points were
selected by hand. A region denoted by a squareis picked by the
user in the saturated region of the device Ins-Vps plane. Bias
points at the corners and the center of this square are chosen.
Should more bias points be required, they are picked from
within the square so as to provide a uniform distribution.

This procedure is in essence driven by the dc curves of the
device since the selection tries to uniformly cover the saturated
region of the bias plane. The characteristics of the S-parameter
data used in the extraction are therefore not considered in the
selection of the bias points. The algorithm described in this sec-
tion overcomes this deficiency by evaluating the S-parameters
when choosing suitable bias points.

The algorithm can be divided into two distinct sections. The
first section of the algorithm selects a region of the Ips—Vps
plane in which it is expected that the small-signa model used
will be able to accurately approximate the corresponding S-pa-
rameter data and the intrinsic elements of the model have well
defined values. This subset of the complete multibias data set
will in subsequent sections be referred to as the region of re-
producibility. The second part of the algorithm chooses a subset
of bias points from this region so that the S-parameters at the
different bias points differ as much as possible from each other.
The agorithm therefore tries to maximize the diversity of the
measured data that is to be used in the extraction. The driving
force behind this selection criterion is the following.

By maximizing the diversity in the measured data used
in the extraction, more emphasisis placed on the elements
which are common to the S-parameters from different bias
points, namely the effect of the bias-independent extrinsic

0.05
0.041
« Centroid Points
<& Initial Diversity Selection
0.03r 1 Refined Diversity Selection
S . Id
o 002 e
2 001} 7:(3 .
E s e .
0} R A
3 ’ (<] »
001t % / ot
[+ o
-0.02} gjf ' .
I L ©
-04  -02 0 02 04 06 08 1

Real {C,,}

Fig. 3. Scatter plot of the centroids of the S, S-parameters of a pHEMT
device. Every e marker represents acentroid C',» of an S, S-parameter curve
at adifferent bias point. Changes in the position, orientation, and length of the
S12 curves due to changes in the bias point of the device is reflected in the
change of the C';; centroid’s position. The centroids marked with ¢ markers
represent bias points that were selected with the first algorithm described in
Section IV-B. This algorithm performs an initial selection of centroids that are
aswidely distributed from each other as possible. In the legend thisis referred
to asthelnitial Diversity Selection. Centroids marked with [J markers represent
changes made in the initial selection (¢ markers) by the second algorithm
described in Section 1V-B, which attempts to refine the initial selection by
improving the distribution of the selected points. Instances where the ¢ and
O markers overlap indicate centroids whose selection were not altered by the
refinement procedure.

elements. Thisaidsin the consistent determination of their

values, which in turn improvesthe accuracy with which al

the other elements can be determined.
Each bias point is represented by four different S-parameters,
of which each can be viewed as a curve in a complex plane.
Each of these curves can change in position, orientation, and
length as the bias voltages of the device are changed. In order to
implement the above-mentioned algorithms, asimple geometric
description of each S-parameter curve is needed that will hide
the complexity of each curve, yet make it possible to detect
changes in the curve due to changes in the device bias point.
The geometric description should not be sensitive to noisein the
measured data and be simple to calculate. One such geometric
description is the centroid of a curve. The centroid is the mean
of the pointsin the complex planethat make up the S-parameter
curve. Each S-parameter is now represented by one complex
number and any changes in the length, orientation, or position
of the curve is reflected by a change of the centroid’ s position.
In theory, there is an infinite number of curves with different
orientations and lengths which will all have the same centroid.
However, for the situation considered here, this is unlikely to
occur and it istherefore not apractical concern. Fig. 3illustrates
the concept by showing the centroids of the Sy S-parameter of
a pseudomorphic high electron-mobility transistor (pHEMT)
device. Every e marker in Fig. 3 represents a centroid of an
S12 S-parameter curve at a different bias point.

A. Sdlecting the Region of Reproducibility From the
Ins—Vns Plane

As stated before, the region of reproducibility is defined as
an area of the Ins—Vps bias plane where it is expected that
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the small-signal model used will be able to accurately approx-
imate the measured S-parameters. In this region of the bias
plane, it is also expected that the intrinsic model elements will
have well-defined values, which implies that they can be ex-
tracted with acceptable accuracy. It is unreasonable to expect
that the equivalent circuit small-signal model can provide the
same quality of data approximation across the whole range of
measured bias points. This observation is substantiated by a
range of related experimental evidence [13], [14]. The multi-
bias extraction procedure searches for a solution that simulta-
neously minimizes the least squares modeling error for a wide
range of bias points by using a relatively small humber of bias
points from the total selection of available data. This solution
can then be expanded to the rest of the data by deembedding the
extrinsic elements and using analytical equations to determine
the values of the intrinsic elements. It is therefore crucia that
potential bias points that will negatively impact on the initial
multibias extraction be excluded from the selection.

The selection criteriafor the region of reproducibility are the
following.

» The device must be suitably nonreciprocal at each of the
bias points. This ensures that every S-parameter data set
used in the multibias extraction provides the maximum
amount of additional information for the extraction algo-
rithm. In order to determine if a device is suitably non-
reciprocal, a reciprocity factor R is calculated using the
centroids for Sy; and S12. R isdefined as

R =|Cy; — Cho] @
where

R reciprocity factor at a specific bias point;

Co1  centroid of S5 at the corresponding bias point;

Ci» centroid of S, at the corresponding bias point.
Thereciprocity factor R isthe magnitude of the vector dif-
ference between the two complex centroid points and will
become zero asthe device becomesreciprocal at Vps = 0
or when Vs decreasesto the point wherethedevice enters
its cut-off region. The first step in the algorithm is to de-
termine the bias point at which R has its maximum value.
All bias pointsfor which R islessthan 20% of Ryax are
discarded. Thislimitsthe minimum value of Vs that will
be used to define the safe region.

» The linear region of the Ins—Vps planeis excluded from
the allowed selection area. Thisregion is characterized by
low R,s €element values, making the determination of the
intrinsic elements difficult. The Sy, data for these bias
points also show large inductive impedances, leading to
the overestimation of the parasitic inductors Ly and L. It
isthisinductive behavior of S5, that isused to isolate bias
pointsin or very closeto the linear region of the Ips—Vps
plane. All bias points for which the S5> curve has any
impedance pointsin theinductiveregion of the Smith chart
are excluded from the safe selection region. This selection
criterion places alimit on the minimum Vpg values of the
safe region.

* Bias points for which Vg is larger than Vg (max) 1S €X-
cluded from the safe region. Vg max) iSdetermined from
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Fig. 4. 3-D representation of I as a function of Vs and V. The bias
points shown with a marker are the result of the region of reproducibility
selection procedure.

the bias point for which g,,pc isamaximum. Theintrinsic
FET model in Fig. 1 does not contain aresistor Ry in se-
rieswith Cyq. A study of the measured intrinsic Y1» of a
number of HEMT devices indicates that the influence of
R, becomes more pronounced for high Vg voltages and
in the linear region. These observations aso hold for al-
ternativeintrinsic FET models[15] since the assumptions
on which they are based are not strictly valid at high Vg
voltages. Vas(max) 1S therefore taken as a convenient and
conservative limit to exclude these areas.

It is important to note that the described linear region iden-
tification step employing the phase of Ss» is only directly
applicable to on-wafer and chip devices, since for packaged
transistors the reactive influence of the packaging causes ad-
ditional phase shifts in the S;; and S,- of the device. Further
more, if measured to a high enough frequency, the Sso of
any device will eventually become inductive. Since the gain
of the device decreases with frequency, this can be guarded
against in the identification algorithm by monitoring So;.

Of the three selection criteria, the last istheleast critical. De-
pending on the range of bias points over which the device was
characterized, it can either be ignored or replaced with a selec-
tion criterion that excludes bias points for which the power dis-
sipation Vg @ Ipg exceeds a user-specified limit. Fig. 4 shows
athree-dimensional (3-D) representation of Ipg asafunction of
Vas and Vs for apHEMT device. The selected bias points are
indicated using solid circles. This subset of the measured data
is now to be used in the diversity-driven selection algorithm.

B. Diversity-Driven Bias Point Selection Algorithm

The diversity driven selection procedure selects a subset of
bias points from the region of reproducibility so that the cen-
troids of the different S-parameters are asfar from each other as
possible. The selection procedure is applied to each of the four
S-parameters separately to ensure that the diversity requirement
issatisfied for all the datato be used in the multibias extraction.
The results of the four separate selections are then combined
to provide alist of distinct bias points for use in the multibias
extraction.
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Thefollowing sequence of steps describestheinitia selection
algorithm.

1) Initidize the algorithm.

a) Get the user specified number of points to be se-
lected Nyax.

b) Normalize the centroid data by removing the mean
component from the data and scaling each axis of the
two-dimensional (2-D) data set to range from —1to 1.
This set of normalized datais represented by S.

¢) Select thecentroid point ¢ furthest from the mean of
the normalized data set S. Point ¢ represents both the
coordinates of the centroid point and the bias voltages
Vas and Vpg associated with the centroid.

d) i = 1,M’ = c. M' represents the 4th point in
the collection M which is used to store the diversity
selected bias points.

2) Evaluate the positions of the data points relative to each
other.

a) Calculate the distance from each point in S to each
of the selected pointsin M.

b) Store the minimum calculated distance for each
centroid point in D.

3) Select the centroid point ¢ corresponding with the max-
imum distance stored in D.

4) i =i+ 1,M* = c. Thisrepresents the next point in the
diversity selection.

5) Ist == Nynax?

6) If not, then go to step 2).

7) If yes, then stop.

The normalization of the centroid data as described in step 1b)
of the selection algorithm isused to obtain adataset inwhich the
real and imaginary components of the cal culated centroids carry
equal weight. It should be noted that the normalization proce-
dure used will affect the operation of the selection procedure due
to the influence that it has on the distribution of the centroids.
Given the fact that there is currently no theoretical basis avail-
able for choosing an optimum normalization, the procedure in
step 1b) was considered to be the safest alternative.

The scatter plot in Fig. 3 containing the Cy4 centroid points
also shows four points selected with the diversity-driven selec-
tion algorithm, indicated with ¢ markers. The bias points se-
lected with the above-described algorithm do not represent the
optimum selection of bias points, but they do provide aselection
that is close to alocal minimum for the problem statement. The
first selection can berefined by using asimilar agorithm on the
already selected points. The refinement step is described by the
following sequence of operations.

1) Initiaize the algorithm.

a) Get the selection of bias points M and the total
number of points S from which the selection was
made.

b) Set the counter i = 1.

2) Check if point M’ should be adjusted to achieve better
diversity

a) Caculatethedistancefrom every pointin S to each
selected point M7, where j # 4.
b) Store the minimum calculated distance for each
pointin S in D.
¢) Replace M’ with the bias point corresponding to
the maximum distance stored in D.

3)i=1i¢+ 1

4) Doesi > the number of pointsin M?

5) If no, then go to step 2)

6) Did the content of selection M change?

7) If yes, then go to step 1b)

8) If no, then stop
The refinement algorithm is very similar to the initial selec-
tion procedure, but does not try to add more points to M. It
only makes adjustments to the positions of the known points to
achieve a selection that provides alocal optimum to the distri-
bution problem. In Fig. 3, the result of the refinement step is
shown with I markers. The initial selection used in the refine-
ment are the points indicated with the ¢ markers.

The application of the selection and refinement ago-
rithms described above to each of the four sets of centroids
Ci11,C21,Cq2, and C,o leads to four separate groups that
now have to be combined into one unified group. The groups
may overlap because the same bias point may satisfy the
diversity selection criteria of more than one S-parameter. This
problem is solved by removing any duplicate bias points from
the selection. A second situation is that different selection
groups may have bias points which are distinct, but whose
centroid points differ by very little. These bias points can
therefore be represented by one bias point. This decreases the
number of points in the selection without seriously decreasing
the diversity of the S-parameter data.

While the removal of bias points that have been duplicated
by the selection procedure is a trivial matter, the trimming of
bias points that provide nearly the same information is less so.
When the selected bias points are plotted on the Ips—Vps plane
of the device (see Fig. 5), one might be tempted to remove se-
lected pointsthat are directly adjacent to each other. This might
bein error since it does not take the S-parameter characteristics
of the device into account. The following trimming procedure
was devised to remove a required number of points from a se-
lection so as to provide the least disturbance to the diversity of
the S-parameter data.

1) Initialize algorithm by getting the user specified number
of data points r to be trimmed from the selection.

2) CombinetheselectionsM 1, M2y, Mj2,and M2, into
one selection M.

3) Remove any duplicate pointsin M.

4) i = 1.

5) Substitute M? with each point in M that does not
come from the same origina subselection problem
(M117M21, M2, Or M22) as Mi, and calculate the
distance of the shift in the centroid coordinates caused
by each substitution.
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O THand selected biab points ' !
AN S-Parameter diversity driven selection of bias points
501 #1,#2 First 2 groups of points identified by the trimming procequig ., o o« vo v-ee .

TABLE |
COMPARISON OF THE EXTRACTION IN [3] WITH THE NEW HYBRID
SEARCH ALGORITHM

401 - e e Range of Random Experiment #1 Experiment #2
—_ P Starting Values Normal Extractions [3] Hybrid Search
= PR R
g 30t T i Parameter | Min. Max. Best Mean a Best Mean a
= R
2 | g e e Lg(pH) | 00047 | 235 69.01 | 6935 | 652 || 6366 | 69.86 | 27.18
— 20 [T - SRS S
RSP SE Ld(pH) | 00030 | 150 50.11 | 6869 | 92.14 || 5024 | 4868 | 67.01
Jowame wa e
1oL S e Ls(pH) {00004 | 20 1157 | 1375 | 843 f| 963 | 1156 | 4.1
CRALTIIIIIINL Rg(Q) 100003 | 175 | 00004 | 068 | 319 | 070 | 033 | 485
of‘%‘%“m”"iiiitici"s'f‘-A?i? i
pREERRRELR RS R ey RI(Q) | 00006 | 30 1237 | 972 | 1262 || 1220 | 1232 | 390
‘ ‘ ‘ ‘ ‘ ‘ ‘ Rs(Q) | 0.0002 10 229 | 252 | 128 || 261 | 245 | 153
0 02 04 06 0~5\3/ ({/ " 12 14 16 18 2 Cpg (fF) | 0.0020 | 100 2660 | 27.95 | 327 || 2007 | 2697 | 2965
olt
b Cpd (fF) | 0.0020 | 100 2419 | 2715 | 1451 || 2414 | 2366 | 27.48
Fig. 5. Ips—Vps curves of a GaAs pHEMT with the bias points selected by
various procedures. The bias points indicated by O markers were selected by TABLE I

hand, while the points indicated with A markers were determined with the
diversity driven selection procedures. Two sets of bias points as identified by
the trimming algorithm are also marked. In each case, these two bias points can
be represented by one bias point without seriously decreasing the diversity of
the S-parameter data

6) Store the bias point which causes the minimum shift in
the centroid of point M’ in A’. This is the associated
bias point to M’,
7Ni=1i+1.
8) if i <« the total number of pointsin M, then go to step
5).
9) Remove the » bias points from M which are closest to
their associated bias pointsin A.
10) Stop.
InFig. 5, thetwo sets of two pointswhich are the closest to each
other interms of their associated S-parameter dataare shownin
dashed lines. Note that for the second selection the bias points
are not immediately adjacent to each other. In fact, the one re-
maining instance in which bias points are adjacent to each other
provides relatively distinct S-parameter data, highlighting the
danger of making decisions purely on the Ips—V pg character-
istics of the device.

V. EXTRACTION RESULTS

The effect of the algorithm extensions is illustrated by per-
forming robustness tests on alattice matched GaAspHEMT de-
vice with a gate length of 0.2 zm and a gate width of 100 ;m
[16]. Certain examples of this device have been found difficult
to model when using the conventional multibias decomposition-
based optimizer [3]. The robustness test consists of repeating
a particular extraction 20 times while using randomly chosen
optimization starting values. The extraction starting values are
chosen over alarge range using a uniform distribution.

Table | represents a summary of the extrinsic elements ob-
tained with and without the hybrid search options described in
Section |I. The table provides the range for each element in
which the optimization starting values were chosen, as well as
the best value, the mean, and the variation A of the extracted ex-
trinsic element values. The best value is defined as the param-
eter corresponding to the extraction with the lowest modeling
error, whilethe variation A is defined as the difference between

COMPARISON OF THE INFLUENCE OF THE ACTIVE BIAS POINT SELECTION
METHOD ON THE HYBRID SEARCH WITH COLD BIAS POINT DRIVEN

EXTENSIONS
Experiment #3 Experiment #4 Results
Hand Selected Active Bias Diversity Driven Selection of Active from (5]
Points Bias Points
Parameter Best Mean a Best Mean A 3 Std % Std %
Lg(pH) 64.80 63.74 2.85 61.66 60.11 4.37 2.30 1.31
Ld (pH) 53.52 6041 ! 1627 51.54 52.16 434 271 1.44
Ls (pH) 10.66 10.81 2.08 10.53 9.15 245 7.15 0.98
Rg(Q) 4.18 5.30 3.62 3.56 3.69 1.78 12.44 28.38
RA(Q) 2.52 2.41 1.54 273 2.55 1.00 10.14 0.57
Rs (Q) 2.10 2.86 2.01 1.68 1.85 1.11 16.13 3.64
Cpg (fF) l 21.80 22.08 3.03 18.81 17.69 5.03 7.72 15.48
Cpd (fF) i 17.97 20.39 5.74 17.43 16.85 2.32 5.24 28.76

the maximum and minimum extracted element value, thusindi-
cating the range of the solutions in absolute terms. Both multi-
bias extraction experiments used 13 bias points selected using
the conventional bias point selection procedure. Fig. 5 containsa
plot of the Ips—V ps curves of the device. The active bias points
used in the extraction are indicated using square markers. In
all the experiments shown here, the measured S-parameter data
ranged from 1 to 45 GHz.

Table I provides comparative test results showing the effect
of combining cold S-parameter data with the hybrid search as
well asthe effect of using active bias points sel ected with the di-
versity maximizing algorithm described in Section V. Both ex-
perimentsin Table Il used the same cold S-parameter data (five
bias points) with Vos < V- and the associated extensions dis-
cussed in Section 1. In both cases, the same number of active
bias points, namely 13, were used. Fig. 5 shows the distribution
of the active bias points selected with the diversity driven selec-
tion procedure.

Table | illustrates that it is not sufficient to sSimply improve
the capabilities of the optimization procedure. The hybrid
procedure in Table | does provide better modeling errors in
many instances, but itisonly when theunderlying characteristics
of thedeviceand thedataare expl oited that theresultsof Tablell
are obtained. The importance of this is that many published
agorithms focus exclusively on improving the capabilities of
the optimization algorithm used. Both the experimentsin Tablel
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Fig. 6. Comparison of the extracted values of the parasitic extrinsic resistors
Ry, Ry, and R, for three of the experiments presented in Tables | and II.
Experiment 1 refers to the first test presented in Table |, while experiments 3
and 4 refer to Table I1.

produced elements of whom the majority have values that are
physically believable. The exceptions are the parasitic gate and
drain resistors £, and Ry. R, has a wide range of extracted
values, with many tending to the lower optimization boundary.
While the variation in Ry is far less, the value of R, is far
larger than what is realistically expected from such an HEMT
device. Thefirst experiment in Table Il showsthat theinclusion
of the cold S-parameter data dramatically improves the range
of solutions obtained for the extrinsic elements. The mean
and best values of the parasitic resistors Ry, Ry, and R, are
closer to each other, but the total variation A in their values
is dtill large. This variation A decreases considerably with
the use of active bias points selected with the diversity-driven
selection procedure, asis illustrated by the second experiment
in Table I1. A comparison of the resultsin Tables | and Il aso
shows that the various extensions discussed cause a decrease in
the difference between the average element values and the best
element values for the majority of the extrinsic parameters.
The extrinsic elements obtained from the two experiments
summarized in Table Il are also consistent in their values with
each other, despite using different active bias points for the
extractions.

A more graphical representation of the test results is given
in Figs. 6 and 7. Fig. 6 contains the variation of the three para-
siticresistors Ry, R4, and R, obtained inthree of therobustness
tests, namely thefirst experiment in Table | and the two experi-
ments described in Table I1. Fig. 7 provides similar results, but
for the parasitic capacitors C,, and Cp,q and the parasitic in-
ductance L. Experience has shown that, of the three parasitic
inductors, L, can be surprisingly difficult to extract. Figs. 6 and
7 clearly indicates how the extensions discussed in this paper
help to improvethe consistency of the solutions obtained. It also
shows the wide range of optimization starting valuesused in the
extractions.

Fig. 8 compares the model ed and the measured .S-parameters
for the bias point Vps = 0.6 V and Ips = 21.354 mA. The
quality of the fit between the modeled and measured .S-param-
eters seen in Fig. 8 represents the largest modeling errors of all

100, 100

10 5
Extraction Number N

O Optimization Starting Values

—+ Experiment #] (Base line for comparisons. Tabic I)
-%- Experiment #3 (Sce Table IT)
-8~ Experiment #4 (See Table [[)

0 5 10 15 20
Extraction Number N

Fig. 7. Comparison of the extracted values of the parasitic extrinsic reactive
elements C,, Cha, and L, for three of the experiments presented in Tables |
and Il. Experiment 1 refers to the first test presented in Table I, while
experiments 3 and 4 refer to Table I1.

150/
180[ -
2108,

Vps = 0.6 V
Ips =21.354 mA

150/

180 i

2108

Fig. 8. Comparison of the measured and modeled S-parameters for the bias
point that resulted in the largest modeling error. This bias point is close to the
knee region of the device Ips—Vps curves, which is one of the most difficult
areas to model accurately. The measured data is represented by the e markers,
while the model generated S -parameters are depicted with the solid line.

the bias points used in the extraction. The indicated bias point
is the closest selected point to the knee region of the Ips—Vps
plane, a difficult areato model. The largest deviations occur in
S12 and S5 and it is suspected that this is due to the omission
of Rgq inthe small-signal model. Ry isalso smaller in thisre-
gion, asis evident from the scale of the Sy polar chart. For all
the bias points further from the knee region, the modeling de-
viations in S1> and Sy» are not present and an excellent fit is
achieved between the model ed and measured data. What is also
clear from Fig. 8 isthat the quality of the measured dataishigh,
with no visible signs of resonances or other measurement de-
viations that can be used to explain the extraction difficulties
experienced with this particular device.

Thework in [4] and [5] contain the only comparable experi-
mental resultsfor HEMT devices of whichweare aware. In both
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cases, results are presented for optimization-orientated multi-
bias extraction algorithms that have been subjected to a large
number of randomly chosen starting values. Lin and Kompa[4]
performed multibias extractions on a chip device that was wire
bonded into a test fixture. This leads to far larger extrinsic in-
ductors than those obtained from on-wafer measurements. The
larger extrinsic reactive elements greatly help with the separa-
tion of the different elements, a fact that was confirmed with
simulated measurements generated using the published model
parameters [17].

Ghazinour and Jansen [5] presented results from on-wafer
measured S-parameters extracted with a hybrid evolu-
tionary/gradient optimization agorithm. Unfortunately, the
data in [5] do not make it possible to perform a complete
comparison. Ghazinour and Jansen [5] summarize the obtained
results by providing the average and the standard deviation
of the extracted elements but presents no further information
regarding the distribution of the extracted elements. The best
individual returned by the evolutionary search, namely the set
of model elements providing lowest modeling error, is also
not listed. The danger of only using the average and standard
deviation in the presentation of the data is that the distribution
of the extracted elements is in many instances not Gaussian
[2], [17]. When a search fails to find an element, that element
in many cases will tend to one of the optimization boundaries.
The average value of the element will not always reflect this.
Neither will the standard deviation do so if, as in most cases,
one of the optimization boundaries are favored. An example
of this behavior can be seen for the element K, in the first
experiment in Table | and by looking at the graphical plot of the
extracted R, values in Fig. 6. In the discussion of the results
in [5], it is also stated that the values of the parasitic resistors
R, and R, are very low compared to what is expected from
physical considerations.

In order to provide comparative results with [5], the last
experiment in Table Il was repeated 100 times using random
starting values. The standard deviation of the elements was
calculated and is expressed as a percentage of the average
values obtained. The values found in [5] are aso listed. The
comparison shows that, with the exception of L, the new
procedure provides similar or smaller standard deviations for
the reactive extrinsic elements. The average value reported
for L, in [5] is 18.30 pH, which is considerably larger than
the value listed in Table II. Such a large source inductance
will have a far more dominant effect on the system, greatly
influencing its extraction accuracy. The parasitic resistors Ry
and R, have larger standard deviations than those reported
in [5], but their values correspond to what is expected from
physical considerations and the solutions are centred around
the average element values.

V1. CONCLUSION

An improved multibias extraction procedure for GaAs FETs
has been presented. The experimental results show that the algo-
rithm is starting value-independent and that it consistently con-
verges to a very small range of solutions for all the model ele-
ments. The procedure exploits both the power of a new hybrid

search algorithm and the underlying characteristic of the device
and the measured .S-parameter datato achieve this.

The hybrid optimizer that was di scussed favors neither the an-
aytical nor the optimization algorithm. Instead it uses both, ac-
cepting the solution that providesthe best modeling results. The
new analytical calculationsare easily integrated into the existing
multibias search and add very little computational overhead to
the search.

The parameter extraction algorithm also exploits the un-
derlying characteristics of both the device and the measured
S-parameter data to further increase its accuracy. While the
use of cold bias points to achieve this goal has certain elements
in common with direct extraction agorithms, the presented
diversity selection algorithm takes the exploitation of the
S-parameter characteristics to a new level. The agorithms
discussed are made possible by using a simple geometric
abstraction for the S-parameter curves. Further uses for these
simple geometric representations of S-parameter data are
currently being investigated.

A full 15-element small-signal model was extracted from
measured S-parameter data using a wide range of randomly
chosen optimization starting values. The accuracy of the
procedure is such that there is less than a 0.2-$2 difference be-
tween the average and the best solution of the extracted values
of nondominant elements such as R,, R4, and R,. For the
reactive extrinsic elements, the difference between the average
and best element values are less than 1.5 nH for the parasitic
inductors and less than 1.4 fF for the extrinsic capacitors. This
indicates a very high consistency in the solutions obtained by
the extraction procedure.

For the development of table-based nonlinear models,
S-parameters are measured at anything between 500 and 1300
bias points using an automated measurement system [18]. The
parameter extraction approach that has been presented in this
paper has attained the required level of robustness that allows
it to efficiently process such large data sets. It forms an integral
part of agorithms used in the generation of nonlinear models
for the purposes of design and technology evaluation [9].
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