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Abstract—A new hybrid multibias analytical/decomposi-
tion-based parameter extraction procedure for GaAs FETs is
described. The analytical calculations are integrated into an
existing decomposition-based optimizer in a complementary
approach, further increasing the robustness of the existing algo-
rithm. It is illustrated that, in order to increase the reliability with
which the full 15-element small-signal model can be extracted,
it is necessary to exploit the underlaying characteristics of the
system and the measured data used. This is achieved through the
use of cold -parameter data, along with simple modifications to
the extraction algorithm, and a new intelligent selection algorithm
for the active bias points used in the multi-bias extraction. The
selection algorithm employs a simple geometric abstraction for
the -parameter data that allows it to select bias points that
maximize the information available to the extraction procedure.
The new selection algorithm shows for the first time what the
influence of the bias points is on the performance of a multibias
extraction procedure. Experimental results proving the robustness
and accuracy of the described procedures are presented.

Index Terms—Centroids, FET, modeling, multibias parameter
extraction, -parameters, selection algorithms, small-signal.

I. INTRODUCTION

THE ability to generate measurement-based GaAs FET
device models that are accurate enough to allow first-time

design success for a variety of systems has long been a major
goal of device modeling orientated computer-aided design
(CAD) algorithms. The extraction of the small-signal model
shown in Fig. 1 plays a crucial role in the construction of a
large number of the nonlinear models that have been created
to satisfy this goal.

The basic approach is to extract the small-signal model at
a variety of different bias points and then use the variation
of the intrinsic elements with bias to construct the nonlinear
model. Such an experimental modeling approach requires that
a large number of -parameter measurements be processed,
creating the need for extraction algorithms that can robustly
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Fig. 1. 15-element small-signal model of a GaAs FET.

perform large extractions without requiring user intervention or
supervision. However, this requirement is made difficult by the
ill-conditioned nature of the small-signal extraction problem.
This causes both direct [1] and optimizer-based extraction
procedures that process the data measured at different bias
points separately to have difficulty in providing consistent
solutions for all the elements in the small-signal model [2].
Several optimizer driven multibias extraction procedures
[3]–[5] that combine data measured at different bias points into
one unified problem have been proposed. These methods all
assume that the extrinsic elements of the model in Fig. 1 are
bias-independent. By combining data from different sources in
the extraction algorithm, more information becomes available
for determining a more unique solution.

In [3] a multibias parameter extraction algorithm that exploits
a decomposition-based optimization algorithm was presented.
The procedure uses multiple sets of -parameters measured at
bias points in the active region of the device’s - plane
and has been successfully applied to the modeling of both
GaAs high electron-mobility transistor (HEMT) and MESFET
devices. Active bias points at which the device is behaving
as a nonreciprocal two-port provide the maximum amount of
measured information per bias point. The extraction algorithm
is built around an adaptive decomposition-based optimizer. This
optimization procedure is independent of initial values and well
suited to the ill-conditioned nature of the extraction problem.
The decomposition approach can also efficiently handle large
dimensional problems and is not as susceptible to the curse of
dimensionality, as in more traditional optimization approaches.
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In [3] a 13-element small-signal model which neglects the
effect of and was extracted. The inclusion of the par-
asitic capacitors when dealing with on-wafer measured devices
greatly increases the complexity of the problem. In practice, an
extraction algorithm has to deal with several phenomena that
make it difficult to achieve consistent results when extracting the
full 15-element model shown in Fig. 1. One of the problems en-
countered is that the parasitic resistors and do not always
adhere to the assumption of bias independence for the extrinsic
elements. It has been found from experience that the value of
can appear to have a large bias dependence and assume values
and a variation with bias that does not correspond to the physical
reality. This in turn can make the determination of the other less
dominant elements difficult. Another difficulty is the small size
of the parasitic inductors , and of on-wafer measured
devices. The small series impedance resulting from the para-
sitic inductors and resistors that separate and from the
larger intrinsic capacitors makes it difficult to accurately extract
the individual capacitor values. In many instances, device mod-
elers are forced to absorb the effect of these two elements into
the intrinsic capacitors by neglecting them from the small-signal
model. can be especially difficult to determine, even for
direct extraction algorithms that rely heavily on model simpli-
fications. The difficulty in determining can also be seen
in the variation of the extracted values of , which exhibits
strong interactions with [6], [7]. Since most of the model
elements have complex interactions with each other, it should
be noted that these potential problems should not be viewed in
isolation from each other. Also, not all devices will exhibit all
of the above-mentioned modeling difficulties.

This paper presents three extensions to the decomposition-
based multibias extraction algorithm discussed in [3] which are
able to overcome the discussed extraction difficulties.

In Section II, a new hybrid optimizer/analytical procedure
aimed at improving the robustness and speed of the original pro-
cedure is presented. Analytical equations for the calculation of
the intrinsic elements are integrated into the existing extraction
procedure. Unlike other published algorithms [4], [5], [8], the
analytical calculations do not replace any section of the opti-
mizer, but are used in a complementary approach.

Section III will show how simple modifications to [3], along
with the use of cold -parameter data, can be used to help over-
come the discussed difficulties in determining , and

.
The one aspect of multibias parameter extraction algorithms

that has not been dealt with before is the influence of the bias
points used in the extraction on the accuracy and the size of
the network that can be extracted. In Section IV, an intelligent
bias point selection algorithm is discussed that maximizes the
information available to the extraction procedure. The aim of
the selection algorithm is to find a relatively small number of
bias points from which a consistent model representation can
be extracted. Once accurate values for the extrinsic elements
are known, they can be de-embedded from the complete set
of multibias -parameters and a nonlinear model can be con-
structed as was done in [9]. The paper is concluded with a pre-
sentation and discussion of experimental results illustrating the

accuracy and robustness of the enhanced multibias extraction
algorithm.

The goal of the work described here is to develop a modeling
procedure that is capable of extracting all the elements of a
small-signal model for the construction of bias-dependent small-
signal models and nonlinear models of commercial devices,
as well as devices under development, using only measured
data. This means that no process-related information, such as
electromagnetic simulations of the device layout, is allowed as
part of the modeling procedure. The reason for this restriction is
due to the fact that process-related information is rarely available
to users of commercial devices. The requirement of accurately
extracting all of the small-signal model elements also places
a limit on the complexity of the equivalent circuit models that
are used in the modeling procedure. For the results presented
in the subsequent sections, the widely published 15-element
model topology in Fig. 1 is used.

II. HYBRID ANALYTICAL/DECOMPOSITION-BASED OPTIMIZER

Experience has shown that certain extraction problems are
more difficult to solve reliably than others, regardless of the fact
that the same type of device with similar dimensions is being
modeled. Systematic measurement errors and the fact that the
small-signal model is an imperfect approximation of the real
device creates a variety of extraction difficulties. This ranges
from extraction problems that differ in their sensitivity to the
initial optimization values to model elements that consistently
converge to nonphysical values. When dealing with measured
data, the modeling algorithm therefore needs to be as robust as
possible.

Several methods that employ analytical equations as part of
an optimization-based extraction approach have been published
[4], [5], [8]. In these formulations, the extrinsic elements are
optimized, while the intrinsic elements are calculated as a func-
tion of the extrinsic elements using analytical equations. The
primary advantage of this approach is that it limits the dimen-
sions of the optimization problem to be solved. The formulation
in [4] is of special relevance since the procedure is expanded to
multibias problems and the analytical equations used are more
robust than the more traditional equations found in [10].

The danger of using analytical equations to calculate the in-
trinsic elements is that the equations may fail in certain instances
due to the measured data used and the ill-conditioned nature of
the problem. The new hybrid procedure proposed here therefore
always uses both optimization and analytical calculations to de-
termine the intrinsic parameters. The two possible solutions for
the intrinsic elements are then compared on an element-by-el-
ement basis and in each instance the model element providing
the best solution is retained.

The following steps describe the operation of the hybrid
algorithm.

1) Load the measured data and the optimization initial values
and perform the required sensitivity calculations for the
decomposition-based optimizer as outlined in [2], [3].

2) Perform one optimization cycle of the subfunctions of the
decomposition optimizer as described in [3].
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3) Perform the hybrid calculations.

a) De-embed the current values of the extrinsic ele-
ments from the measured data.
b) Calculate an alternative set of intrinsic elements for
each bias point in the extraction using the analytical
equations in [4].
c) Compare each of the optimization-derived in-
trinsic elements with its corresponding calculated
value and choose the element value that provides the
lowest modeling error in the elements’ associated
optimization subfunction. These subfunctions are the
same error functions that are used by the decompo-
sition-based optimizer when determining the model
element values in step 2).

4) Check if the search termination criteria are satisfied.
5) If no, then go to 2)
6) If yes, then stop.

The above description illustrates how the analytical step is in-
corporated into the existing optimizer. If step 3) is disabled,
the algorithm reverts to the normal decomposition-based opti-
mizer. By using the suboptimization error functions in step 3c),
it becomes possible to compare the two solutions on an ele-
ment-by-element basis. This would not be possible if a global
error representing the modeling accuracy of all four -param-
eters of a corresponding bias point was used. The global error
would be mostly influenced by the dominant model parameters,
creating the situation where possible good solutions for the less
dominant elements are discarded.

In addition to making the extraction more robust, the hybrid
procedure shown above also increases the speed of convergence,
especially during the first few iterations when the overall mod-
eling error is large.

III. DATA-DRIVEN EXTENSIONS TO THE MULTIBIAS

EXTRACTION ALGORITHM

Much attention has been paid in the literature to the difficul-
ties involved in extracting the parasitic gate resistance .
is one of the least dominant elements in the model and is highly
correlated with the intrinsic channel resistance . The ability
to separate the values of these two elements has been one of the
motivations behind the development of multibias extraction al-
gorithms.

However, less attention has been paid to the extraction of the
parasitic drain resistance . Experience has shown to be
the element that least conforms to the assumption of bias in-
dependence for the extrinsic elements when extracted from hot

-parameters. For a variety of HEMTs that have been tested, it
was found that can assume either very large or very small
nonphysical values, while for MESFETs can tend toward
negative values. In the case of MESFETs, the behavior of
could possibly be linked to high field effects between the gate
and drain terminals [11], but for HEMTs no satisfactory phys-
ical explanation is known. Unlike , which has very little in-
fluence on the overall extraction accuracy, the value of is
more critical for the successful determination of the other non-
dominant elements in the multibias extraction.

Fig. 2. Simplified representation of the output impedance of a GaAs FET.

In [12], an extraction procedure for determining and
using cold bias points with the gate held at a suitably large for-
ward bias was used. Fig. 2 and the equation

(1)

show a simplified representation of the output impedance of a
GaAs FET. When is increased, decreases, resulting in
the real part of the FET output impedance being dominated by

and . It is this behavior that is exploited in [12]. A careful
study of (1) shows that a similar result is obtained when as-
sumes very large values, as would be the case when is equal
to or less than the pinch-off voltage . Equation (1) also shows
that the dominance of and on the output impedance can
be further enhanced by using measured data from the upper
measurement frequencies. It should be noted that the effect of
the parasitic drain capacitance is ignored in Fig. 2 and
(1). Unlike direct extraction algorithms, optimizer-based proce-
dures do not need to achieve a near exact separation between the
model elements. For a successful extraction, it is only required
to find the conditions for which the influence of an element will
be more dominant.

A further advantage of using data from cold bias points with
is that the intrinsic model reduces to the three intrinsic

capacitor values , and . The bias points therefore
add a minimum of extra parameters to the multibias extraction
problem, while providing valuable additional information for
determining the solution.

The extraction algorithm in [3] is extended by allowing the
user to lock a small-signal model element to a specified list of
bias points. Only this subset of the data will be used for the de-
termination of the particular model element. The user also has
the possibility to specify the frequency range of the measured
data that is to be used in the determination of an element. To de-
termine , the user thus specifies a number of cold bias points
with along with the normally used nonreciprocal
data from active bias points. is locked to the cold bias points
and no other data is used in the determination of the element.
To further aid in the determination of , only measurements
made at frequencies above 15 GHz are used.

The second problem experienced in the extraction of the
model in Fig. 1 is the separation of the parasitic capacitors
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and from the intrinsic capacitors. The parasitic capacitors
are separated from the intrinsic capacitors by small series
impedances and their values are small when compared to those
of the intrinsic capacitors at most bias points. Their values
are therefore easily absorbed into the values of the intrinsic
capacitors due to the inability of the extraction algorithm to
clearly distinguish their effect from the other model elements.

In order to determine and , the same extensions as
were used for determining can be employed. The parasitic
capacitors are locked to the cold -parameter data with

since the intrinsic capacitors generally assume their smallest
values in this bias range. The extrinsic capacitors are therefore
not as overshadowed as before by the size of the intrinsic capac-
itors. To further decrease any interaction between the different
extrinsic elements, and are only determined from data
measured at frequencies below 10 GHz, while the extrinsic in-
ductors and resistors are determined from data measured at fre-
quencies above 15 GHz.

IV. MEASUREMENT-BASED ACTIVE BIAS POINT

SELECTION ALGORITHM

The previous section illustrates how cold measurements,
along with suitable modifications to the extraction algorithm,
can be used to enhance the ability to determine extrinsic
elements that are otherwise difficult to extract. The majority of
the measured data is, however, still obtained from active bias
points where the device is acting as a nonreciprocal two-port.
For the extractions presented in [3], the active bias points were
selected by hand. A region denoted by a square is picked by the
user in the saturated region of the device - plane. Bias
points at the corners and the center of this square are chosen.
Should more bias points be required, they are picked from
within the square so as to provide a uniform distribution.

This procedure is in essence driven by the dc curves of the
device since the selection tries to uniformly cover the saturated
region of the bias plane. The characteristics of the -parameter
data used in the extraction are therefore not considered in the
selection of the bias points. The algorithm described in this sec-
tion overcomes this deficiency by evaluating the -parameters
when choosing suitable bias points.

The algorithm can be divided into two distinct sections. The
first section of the algorithm selects a region of the –
plane in which it is expected that the small-signal model used
will be able to accurately approximate the corresponding -pa-
rameter data and the intrinsic elements of the model have well
defined values. This subset of the complete multibias data set
will in subsequent sections be referred to as the region of re-
producibility. The second part of the algorithm chooses a subset
of bias points from this region so that the -parameters at the
different bias points differ as much as possible from each other.
The algorithm therefore tries to maximize the diversity of the
measured data that is to be used in the extraction. The driving
force behind this selection criterion is the following.

By maximizing the diversity in the measured data used
in the extraction, more emphasis is placed on the elements
which are common to the -parameters from different bias
points, namely the effect of the bias-independent extrinsic

Fig. 3. Scatter plot of the centroids of the S S-parameters of a pHEMT
device. Every � marker represents a centroid C of an S S-parameter curve
at a different bias point. Changes in the position, orientation, and length of the
S curves due to changes in the bias point of the device is reflected in the
change of the C centroid’s position. The centroids marked with � markers
represent bias points that were selected with the first algorithm described in
Section IV-B. This algorithm performs an initial selection of centroids that are
as widely distributed from each other as possible. In the legend this is referred
to as the Initial Diversity Selection. Centroids marked with markers represent
changes made in the initial selection (� markers) by the second algorithm
described in Section IV-B, which attempts to refine the initial selection by
improving the distribution of the selected points. Instances where the � and

markers overlap indicate centroids whose selection were not altered by the
refinement procedure.

elements. This aids in the consistent determination of their
values, which in turn improves the accuracy with which all
the other elements can be determined.

Each bias point is represented by four different -parameters,
of which each can be viewed as a curve in a complex plane.
Each of these curves can change in position, orientation, and
length as the bias voltages of the device are changed. In order to
implement the above-mentioned algorithms, a simple geometric
description of each -parameter curve is needed that will hide
the complexity of each curve, yet make it possible to detect
changes in the curve due to changes in the device bias point.
The geometric description should not be sensitive to noise in the
measured data and be simple to calculate. One such geometric
description is the centroid of a curve. The centroid is the mean
of the points in the complex plane that make up the -parameter
curve. Each -parameter is now represented by one complex
number and any changes in the length, orientation, or position
of the curve is reflected by a change of the centroid’s position.
In theory, there is an infinite number of curves with different
orientations and lengths which will all have the same centroid.
However, for the situation considered here, this is unlikely to
occur and it is therefore not a practical concern. Fig. 3 illustrates
the concept by showing the centroids of the -parameter of
a pseudomorphic high electron-mobility transistor (pHEMT)
device. Every marker in Fig. 3 represents a centroid of an

-parameter curve at a different bias point.

A. Selecting the Region of Reproducibility From the
– Plane

As stated before, the region of reproducibility is defined as
an area of the – bias plane where it is expected that
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the small-signal model used will be able to accurately approx-
imate the measured -parameters. In this region of the bias
plane, it is also expected that the intrinsic model elements will
have well-defined values, which implies that they can be ex-
tracted with acceptable accuracy. It is unreasonable to expect
that the equivalent circuit small-signal model can provide the
same quality of data approximation across the whole range of
measured bias points. This observation is substantiated by a
range of related experimental evidence [13], [14]. The multi-
bias extraction procedure searches for a solution that simulta-
neously minimizes the least squares modeling error for a wide
range of bias points by using a relatively small number of bias
points from the total selection of available data. This solution
can then be expanded to the rest of the data by deembedding the
extrinsic elements and using analytical equations to determine
the values of the intrinsic elements. It is therefore crucial that
potential bias points that will negatively impact on the initial
multibias extraction be excluded from the selection.

The selection criteria for the region of reproducibility are the
following.

• The device must be suitably nonreciprocal at each of the
bias points. This ensures that every -parameter data set
used in the multibias extraction provides the maximum
amount of additional information for the extraction algo-
rithm. In order to determine if a device is suitably non-
reciprocal, a reciprocity factor is calculated using the
centroids for and . is defined as

(2)

where
reciprocity factor at a specific bias point;
centroid of at the corresponding bias point;
centroid of at the corresponding bias point.

The reciprocity factor is the magnitude of the vector dif-
ference between the two complex centroid points and will
become zero as the device becomes reciprocal at
or when decreases to the point where the device enters
its cut-off region. The first step in the algorithm is to de-
termine the bias point at which has its maximum value.
All bias points for which is less than 20% of are
discarded. This limits the minimum value of that will
be used to define the safe region.

• The linear region of the – plane is excluded from
the allowed selection area. This region is characterized by
low element values, making the determination of the
intrinsic elements difficult. The data for these bias
points also show large inductive impedances, leading to
the overestimation of the parasitic inductors and . It
is this inductive behavior of that is used to isolate bias
points in or very close to the linear region of the –
plane. All bias points for which the curve has any
impedance points in the inductive region of the Smith chart
are excluded from the safe selection region. This selection
criterion places a limit on the minimum values of the
safe region.

• Bias points for which is larger than is ex-
cluded from the safe region. is determined from

Fig. 4. 3-D representation of I as a function of V and V . The bias
points shown with a marker are the result of the region of reproducibility
selection procedure.

the bias point for which is a maximum. The intrinsic
FET model in Fig. 1 does not contain a resistor in se-
ries with . A study of the measured intrinsic of a
number of HEMT devices indicates that the influence of

becomes more pronounced for high voltages and
in the linear region. These observations also hold for al-
ternative intrinsic FET models [15] since the assumptions
on which they are based are not strictly valid at high
voltages. is therefore taken as a convenient and
conservative limit to exclude these areas.

It is important to note that the described linear region iden-
tification step employing the phase of is only directly
applicable to on-wafer and chip devices, since for packaged
transistors the reactive influence of the packaging causes ad-
ditional phase shifts in the and of the device. Further
more, if measured to a high enough frequency, the of
any device will eventually become inductive. Since the gain
of the device decreases with frequency, this can be guarded
against in the identification algorithm by monitoring .

Of the three selection criteria, the last is the least critical. De-
pending on the range of bias points over which the device was
characterized, it can either be ignored or replaced with a selec-
tion criterion that excludes bias points for which the power dis-
sipation exceeds a user-specified limit. Fig. 4 shows
a three-dimensional (3-D) representation of as a function of

and for a pHEMT device. The selected bias points are
indicated using solid circles. This subset of the measured data
is now to be used in the diversity-driven selection algorithm.

B. Diversity-Driven Bias Point Selection Algorithm

The diversity driven selection procedure selects a subset of
bias points from the region of reproducibility so that the cen-
troids of the different -parameters are as far from each other as
possible. The selection procedure is applied to each of the four

-parameters separately to ensure that the diversity requirement
is satisfied for all the data to be used in the multibias extraction.
The results of the four separate selections are then combined
to provide a list of distinct bias points for use in the multibias
extraction.
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The following sequence of steps describes the initial selection
algorithm.

1) Initialize the algorithm.

a) Get the user specified number of points to be se-
lected .
b) Normalize the centroid data by removing the mean
component from the data and scaling each axis of the
two-dimensional (2-D) data set to range from 1 to 1.
This set of normalized data is represented by .
c) Select the centroid point furthest from the mean of
the normalized data set . Point represents both the
coordinates of the centroid point and the bias voltages

and associated with the centroid.
d) represents the th point in
the collection which is used to store the diversity
selected bias points.

2) Evaluate the positions of the data points relative to each
other.

a) Calculate the distance from each point in to each
of the selected points in .
b) Store the minimum calculated distance for each
centroid point in .

3) Select the centroid point corresponding with the max-
imum distance stored in .

4) . This represents the next point in the
diversity selection.

5) Is ?
6) If not, then go to step 2).
7) If yes, then stop.

The normalization of the centroid data as described in step 1b)
of the selection algorithm is used to obtain a data set in which the
real and imaginary components of the calculated centroids carry
equal weight. It should be noted that the normalization proce-
dure used will affect the operation of the selection procedure due
to the influence that it has on the distribution of the centroids.
Given the fact that there is currently no theoretical basis avail-
able for choosing an optimum normalization, the procedure in
step 1b) was considered to be the safest alternative.

The scatter plot in Fig. 3 containing the centroid points
also shows four points selected with the diversity-driven selec-
tion algorithm, indicated with markers. The bias points se-
lected with the above-described algorithm do not represent the
optimum selection of bias points, but they do provide a selection
that is close to a local minimum for the problem statement. The
first selection can be refined by using a similar algorithm on the
already selected points. The refinement step is described by the
following sequence of operations.

1) Initialize the algorithm.

a) Get the selection of bias points and the total
number of points from which the selection was
made.
b) Set the counter .

2) Check if point should be adjusted to achieve better
diversity

a) Calculate the distance from every point in to each
selected point , where .
b) Store the minimum calculated distance for each
point in in .
c) Replace with the bias point corresponding to
the maximum distance stored in .

3) .
4) Does the number of points in ?
5) If no, then go to step 2)
6) Did the content of selection change?
7) If yes, then go to step 1b)
8) If no, then stop

The refinement algorithm is very similar to the initial selec-
tion procedure, but does not try to add more points to . It
only makes adjustments to the positions of the known points to
achieve a selection that provides a local optimum to the distri-
bution problem. In Fig. 3, the result of the refinement step is
shown with markers. The initial selection used in the refine-
ment are the points indicated with the markers.

The application of the selection and refinement algo-
rithms described above to each of the four sets of centroids

, and leads to four separate groups that
now have to be combined into one unified group. The groups
may overlap because the same bias point may satisfy the
diversity selection criteria of more than one -parameter. This
problem is solved by removing any duplicate bias points from
the selection. A second situation is that different selection
groups may have bias points which are distinct, but whose
centroid points differ by very little. These bias points can
therefore be represented by one bias point. This decreases the
number of points in the selection without seriously decreasing
the diversity of the -parameter data.

While the removal of bias points that have been duplicated
by the selection procedure is a trivial matter, the trimming of
bias points that provide nearly the same information is less so.
When the selected bias points are plotted on the – plane
of the device (see Fig. 5), one might be tempted to remove se-
lected points that are directly adjacent to each other. This might
be in error since it does not take the -parameter characteristics
of the device into account. The following trimming procedure
was devised to remove a required number of points from a se-
lection so as to provide the least disturbance to the diversity of
the -parameter data.

1) Initialize algorithm by getting the user specified number
of data points to be trimmed from the selection.

2) Combine the selections , and into
one selection .

3) Remove any duplicate points in .
4) .
5) Substitute with each point in that does not

come from the same original subselection problem
( , or ) as , and calculate the
distance of the shift in the centroid coordinates caused
by each substitution.
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Fig. 5. I –V curves of a GaAs pHEMT with the bias points selected by
various procedures. The bias points indicated by markers were selected by
hand, while the points indicated with � markers were determined with the
diversity driven selection procedures. Two sets of bias points as identified by
the trimming algorithm are also marked. In each case, these two bias points can
be represented by one bias point without seriously decreasing the diversity of
the S-parameter data.

6) Store the bias point which causes the minimum shift in
the centroid of point in . This is the associated
bias point to .

7) .
8) if the total number of points in , then go to step

5).
9) Remove the bias points from which are closest to

their associated bias points in .
10) Stop.

In Fig. 5, the two sets of two points which are the closest to each
other in terms of their associated -parameter data are shown in
dashed lines. Note that for the second selection the bias points
are not immediately adjacent to each other. In fact, the one re-
maining instance in which bias points are adjacent to each other
provides relatively distinct -parameter data, highlighting the
danger of making decisions purely on the I –V character-
istics of the device.

V. EXTRACTION RESULTS

The effect of the algorithm extensions is illustrated by per-
forming robustness tests on a lattice matched GaAs pHEMT de-
vice with a gate length of 0.2 m and a gate width of 100 m
[16]. Certain examples of this device have been found difficult
to model when using the conventional multibias decomposition-
based optimizer [3]. The robustness test consists of repeating
a particular extraction 20 times while using randomly chosen
optimization starting values. The extraction starting values are
chosen over a large range using a uniform distribution.

Table I represents a summary of the extrinsic elements ob-
tained with and without the hybrid search options described in
Section II. The table provides the range for each element in
which the optimization starting values were chosen, as well as
the best value, the mean, and the variation of the extracted ex-
trinsic element values. The best value is defined as the param-
eter corresponding to the extraction with the lowest modeling
error, while the variation is defined as the difference between

TABLE I
COMPARISON OF THE EXTRACTION IN [3] WITH THE NEW HYBRID

SEARCH ALGORITHM

TABLE II
COMPARISON OF THE INFLUENCE OF THE ACTIVE BIAS POINT SELECTION

METHOD ON THE HYBRID SEARCH WITH COLD BIAS POINT DRIVEN

EXTENSIONS

the maximum and minimum extracted element value, thus indi-
cating the range of the solutions in absolute terms. Both multi-
bias extraction experiments used 13 bias points selected using
the conventional bias point selection procedure. Fig. 5 contains a
plot of the I –V curves of the device. The active bias points
used in the extraction are indicated using square markers. In
all the experiments shown here, the measured -parameter data
ranged from 1 to 45 GHz.

Table II provides comparative test results showing the effect
of combining cold -parameter data with the hybrid search as
well as the effect of using active bias points selected with the di-
versity maximizing algorithm described in Section IV. Both ex-
periments in Table II used the same cold -parameter data (five
bias points) with and the associated extensions dis-
cussed in Section III. In both cases, the same number of active
bias points, namely 13, were used. Fig. 5 shows the distribution
of the active bias points selected with the diversity driven selec-
tion procedure.

Table I illustrates that it is not sufficient to simply improve
the capabilities of the optimization procedure. The hybrid
procedure in Table I does provide better modeling errors in
many instances, but it is only when the underlying characteristics
of the device and the data are exploited that the results of Table II
are obtained. The importance of this is that many published
algorithms focus exclusively on improving the capabilities of
the optimization algorithm used. Both the experiments in Table I
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Fig. 6. Comparison of the extracted values of the parasitic extrinsic resistors
R ; R , and R for three of the experiments presented in Tables I and II.
Experiment 1 refers to the first test presented in Table I, while experiments 3
and 4 refer to Table II.

produced elements of whom the majority have values that are
physically believable. The exceptions are the parasitic gate and
drain resistors and . has a wide range of extracted
values, with many tending to the lower optimization boundary.
While the variation in is far less, the value of is far
larger than what is realistically expected from such an HEMT
device. The first experiment in Table II shows that the inclusion
of the cold -parameter data dramatically improves the range
of solutions obtained for the extrinsic elements. The mean
and best values of the parasitic resistors , and are
closer to each other, but the total variation in their values
is still large. This variation decreases considerably with
the use of active bias points selected with the diversity-driven
selection procedure, as is illustrated by the second experiment
in Table II. A comparison of the results in Tables I and II also
shows that the various extensions discussed cause a decrease in
the difference between the average element values and the best
element values for the majority of the extrinsic parameters.
The extrinsic elements obtained from the two experiments
summarized in Table II are also consistent in their values with
each other, despite using different active bias points for the
extractions.

A more graphical representation of the test results is given
in Figs. 6 and 7. Fig. 6 contains the variation of the three para-
sitic resistors , and obtained in three of the robustness
tests, namely the first experiment in Table I and the two experi-
ments described in Table II. Fig. 7 provides similar results, but
for the parasitic capacitors and and the parasitic in-
ductance . Experience has shown that, of the three parasitic
inductors, can be surprisingly difficult to extract. Figs. 6 and
7 clearly indicates how the extensions discussed in this paper
help to improve the consistency of the solutions obtained. It also
shows the wide range of optimization starting values used in the
extractions.

Fig. 8 compares the modeled and the measured -parameters
for the bias point V and mA. The
quality of the fit between the modeled and measured -param-
eters seen in Fig. 8 represents the largest modeling errors of all

Fig. 7. Comparison of the extracted values of the parasitic extrinsic reactive
elements C ; C , and L for three of the experiments presented in Tables I
and II. Experiment 1 refers to the first test presented in Table I, while
experiments 3 and 4 refer to Table II.

Fig. 8. Comparison of the measured and modeled S-parameters for the bias
point that resulted in the largest modeling error. This bias point is close to the
knee region of the device I –V curves, which is one of the most difficult
areas to model accurately. The measured data is represented by the � markers,
while the model generated S-parameters are depicted with the solid line.

the bias points used in the extraction. The indicated bias point
is the closest selected point to the knee region of the –
plane, a difficult area to model. The largest deviations occur in

and and it is suspected that this is due to the omission
of in the small-signal model. is also smaller in this re-
gion, as is evident from the scale of the polar chart. For all
the bias points further from the knee region, the modeling de-
viations in and are not present and an excellent fit is
achieved between the modeled and measured data. What is also
clear from Fig. 8 is that the quality of the measured data is high,
with no visible signs of resonances or other measurement de-
viations that can be used to explain the extraction difficulties
experienced with this particular device.

The work in [4] and [5] contain the only comparable experi-
mental results for HEMT devices of which we are aware. In both
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cases, results are presented for optimization-orientated multi-
bias extraction algorithms that have been subjected to a large
number of randomly chosen starting values. Lin and Kompa [4]
performed multibias extractions on a chip device that was wire
bonded into a test fixture. This leads to far larger extrinsic in-
ductors than those obtained from on-wafer measurements. The
larger extrinsic reactive elements greatly help with the separa-
tion of the different elements, a fact that was confirmed with
simulated measurements generated using the published model
parameters [17].

Ghazinour and Jansen [5] presented results from on-wafer
measured -parameters extracted with a hybrid evolu-
tionary/gradient optimization algorithm. Unfortunately, the
data in [5] do not make it possible to perform a complete
comparison. Ghazinour and Jansen [5] summarize the obtained
results by providing the average and the standard deviation
of the extracted elements but presents no further information
regarding the distribution of the extracted elements. The best
individual returned by the evolutionary search, namely the set
of model elements providing lowest modeling error, is also
not listed. The danger of only using the average and standard
deviation in the presentation of the data is that the distribution
of the extracted elements is in many instances not Gaussian
[2], [17]. When a search fails to find an element, that element
in many cases will tend to one of the optimization boundaries.
The average value of the element will not always reflect this.
Neither will the standard deviation do so if, as in most cases,
one of the optimization boundaries are favored. An example
of this behavior can be seen for the element in the first
experiment in Table I and by looking at the graphical plot of the
extracted values in Fig. 6. In the discussion of the results
in [5], it is also stated that the values of the parasitic resistors

and are very low compared to what is expected from
physical considerations.

In order to provide comparative results with [5], the last
experiment in Table II was repeated 100 times using random
starting values. The standard deviation of the elements was
calculated and is expressed as a percentage of the average
values obtained. The values found in [5] are also listed. The
comparison shows that, with the exception of , the new
procedure provides similar or smaller standard deviations for
the reactive extrinsic elements. The average value reported
for in [5] is 18.30 pH, which is considerably larger than
the value listed in Table II. Such a large source inductance
will have a far more dominant effect on the system, greatly
influencing its extraction accuracy. The parasitic resistors
and have larger standard deviations than those reported
in [5], but their values correspond to what is expected from
physical considerations and the solutions are centred around
the average element values.

VI. CONCLUSION

An improved multibias extraction procedure for GaAs FETs
has been presented. The experimental results show that the algo-
rithm is starting value-independent and that it consistently con-
verges to a very small range of solutions for all the model ele-
ments. The procedure exploits both the power of a new hybrid

search algorithm and the underlying characteristic of the device
and the measured -parameter data to achieve this.

The hybrid optimizer that was discussed favors neither the an-
alytical nor the optimization algorithm. Instead it uses both, ac-
cepting the solution that provides the best modeling results. The
new analytical calculations are easily integrated into the existing
multibias search and add very little computational overhead to
the search.

The parameter extraction algorithm also exploits the un-
derlying characteristics of both the device and the measured

-parameter data to further increase its accuracy. While the
use of cold bias points to achieve this goal has certain elements
in common with direct extraction algorithms, the presented
diversity selection algorithm takes the exploitation of the

-parameter characteristics to a new level. The algorithms
discussed are made possible by using a simple geometric
abstraction for the -parameter curves. Further uses for these
simple geometric representations of -parameter data are
currently being investigated.

A full 15-element small-signal model was extracted from
measured -parameter data using a wide range of randomly
chosen optimization starting values. The accuracy of the
procedure is such that there is less than a 0.2- difference be-
tween the average and the best solution of the extracted values
of nondominant elements such as , and . For the
reactive extrinsic elements, the difference between the average
and best element values are less than 1.5 nH for the parasitic
inductors and less than 1.4 fF for the extrinsic capacitors. This
indicates a very high consistency in the solutions obtained by
the extraction procedure.

For the development of table-based nonlinear models,
-parameters are measured at anything between 500 and 1300

bias points using an automated measurement system [18]. The
parameter extraction approach that has been presented in this
paper has attained the required level of robustness that allows
it to efficiently process such large data sets. It forms an integral
part of algorithms used in the generation of nonlinear models
for the purposes of design and technology evaluation [9].
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